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Abstract

This paper addresses the trajectory tracking problem for a class of uncertain manipu-
lator systems under the effect of external disturbances. The main challenges lie in the
input constraints and the lack of measurements of joint velocities. We first utilize an
extend-state-observer to estimate the velocity signals, then a neural-network-based
adaptive controller is proposed to solve the problem, where a term based on the nom-
inal model is included to enhance the tracking ability, and the effect of uncertainties
and disturbances are compensated by a neural-network term. Compared with the
existing methods, the main distinctive features of the presented approach are: i) The
control law is guaranteed to be bounded by design, instead of directly bounded by a
saturation function. ii) The trade-off between the performance and robustness of the
presented controller can be easily tuned by a parameter that depends on the size of
model uncertainties and external disturbances. By virtue of the Lyapunov theorem,
the convergence properties of the proposed controller are rigorously proved. The
performance of the controller is validated via both simulations and experiments con-
ducted on a two-degree-of-freedom robot manipulator.
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1 INTRODUCTION

Trajectory tracking control of robot manipulators has been extensively studied in past decades1,2, but still a topic of both
theoretical and practical significance, due to the dynamic couplings, model uncertainties, impact of external disturbances and
input constraints, just to name a few. In the ideal case where the model and full-state of the system are available and accurate,
adequate existing techniques3,4, including the well-known PID control5, are capable of achieving asymptotic tracking objectives
with satisfactory transient performance. However, in practical applications, the uncertainties of the model are almost inevitable,
especially considering the wear-out, and an environment without noise is not realistic either.

Numerous methods6,7,8 have been developed to address the challenge stemming from the model uncertainties and external
disturbances, which are usually termed as “lumped uncertainties” in the literature9. Among them, the neural-network-based (NN-
based) adaptive control attracts plenty of attention10,11 as the adaptive methodology12 is able to adjust the controller parameters
on-line to cope with the lumped uncertainties, while the NN-based mechanisms13 is capable of approximating the nonlinear
dynamics in a linear manner. One can even avoid the use of the robot dynamic model14 by means of employing a pure NN-based
controller. However, it is practically illogical to totally ignore the physical model because, in most cases, certain (structural)
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prior knowledge of the manipulator to be controlled is indeed trivial to obtain. Therefore, the control problem addressed in this
paper considers the nominal model to be largely uncertain, but not completely unknown.

Despite the intriguing performance of aforementioned adaptive NN methods, the constraints of actuators are rarely considered,
which, if not properly coped, may severely degrade system performances and even cause instability15,16. The controllers proposed
in17,18 are bounded, but the boundary of the control signal cannot be determined by the users, that is, whether this bounded input
satisfies the limits of the actuator or not, is unknown and unmodifiable19. It is of practical importance to constrain the control
signal within the physical limits before it is sent to the actuator. An intuitive solution is to apply a sigmoid function to the control
law, as15 did. However, in this way, certain sacrifices of performance are inevitable, especially when the control signals are
kept saturated during the whole transient period. The controller proposed in20 have adjustable boundaries, but it also require an
accurate model. In21, a control algorithm based on prescribed performance control method is proposed to address the tracking
problem under different input constraints. However, it requires the utilization of fuzzy control to model system uncertainties,
rendering the controller complex.

Moreover, the majority control methods mentioned above assume that the full-state of the system can be measured directly
and accurately. However, in practice, not all the states of the manipulator can be obtained directly22. As the tracking objective
is in generally specified in terms of the angular position, this work focuses on the situation where the velocity measurements of
the robotic manipulator are unavailable23. On the one hand, as shown in24,25, the information on the joint velocity is essential
to construct a stabilizing controller. On the other hand, the joint velocity can not be obtained by differentiating the angular data
due to the sensor noise26. Hence, designing an effective observer to recover the velocity information becomes another attractive
research topic27 in the manipulator control problem. But how to combine such an observer with a stabilizing adaptive controller
that satisfies the input constraints and achieves the asymptotic tracking of desired trajectories remains an issue far from settled,
which is therefore the topic of this paper.

Based on the preliminary work28, this paper continues the quest of designing a novel NN-based adaptive controller for uncer-
tain robotic manipulator systems under the input constraint, the external disturbances, and more importantly, the hypothesis
that the joint velocity signals are unavailable. The main obstacle of solving this problem lies in the fact that the stability of the
closed-loop system relies on the accurate velocity estimates, while the convergence of estimation error in general needs the tra-
jectories of the closed-loop system to be bounded, i.e., the system has been stabilized. Not to mention, we also need to consider
the input constraints. To address these issues, inspired by the Extended State Observer (ESO)29, a modified fal-based ESO is
constructed to provide the estimate of angular velocity while avoiding excessive initial errors. Then, the observer errors were
added to the lumped uncertainties to be compensated by a neural network. Next, projection operations are adopted for the NN
and observer in order to construct a stabilizing and bounded control law. Further, a tanh() function is utilized here instead of
using directly the saturation function to allow the boundary of the input signal to be rendered verifying the limits of actuators.

In summary, the proposed neural network-based adaptive controller is a tunable combination of model-based control and
data-driven learning mechanisms. By introducing the parameter 𝜄 to adjust the algorithm’s confidence in the model, we enable
the proposed approach to switch and balance between robustness and performance. Furthermore, in contrast to existing litera-
ture15,30, the controller presented in this paper naturally adheres to input constraints. Unlike methods that directly restrict the
maximum controller signal using sigmoid saturation functions or physical constraints, our controller, while satisfying the con-
straints, does not compromise control performance, and it does not induce system instability. Additionally, the boundaries of the
controller output signals are fully adjustable, allowing our controller to adapt better to a wider range of application scenarios.

The rest of the paper is organized as follows. In section 2, some knowledge about preliminaries is introduced, and the dynamic
model of system and control problem concerned are formally stated. A velocity observer whose estimation error is always
bounded is introduced in section 3. By using the theoretical results of section 3, a new NN-based adaptive controller is proposed
in section 4 to solve the problem. Then, in section 5, we present a rigorous analysis to show the ISS property of the closed-
loop system and the boundedness of the input signal. Finally, simulation results and experiments are given in section 6 and 7,
respectively. A brief remark is concluded in section 8, and the appendix provides some supporting proofs.
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2 PROBLEM FORMULATION

2.1 Preliminaries
The NN is an efficient tool to approximate unknown nonlinear functions. In this paper, the model uncertainties and external
disturbances are formulated as a smooth function 𝑓 (⋅) ∶ ℝ𝑚 → ℝ𝑛 over a compact set Ω𝑁 ⊆ ℝ𝑚, and approximated as31:

𝑓 (𝑧) ≜ 𝑊̂ ⊤𝜎(𝑧) (1)

where 𝑧 ∈ ℝ𝑚 is the input vector, 𝑊̂ ∈ ℝ×𝑛 is the weight matrix with  denoting the number of neurons, and 𝜎(𝑧) ∈ ℝ is the
Gaussian activation function defined as 𝜎(𝑧) ≜ [𝜎(𝑧)⋯ 𝜎(𝑧)]⊤ with the basis Gaussian functions 𝜎𝑖(⋅), for 𝑖 = 1, 2,⋯ ,, given
by 𝜎𝑖(𝑧) ≜

∏𝑚
𝑘=1 𝑒

−(𝑧𝑘−𝜇𝑖𝑘)2∕2𝑝𝑖𝑘 in which 𝑧𝑘, 𝜇𝑖𝑘 and 𝑝𝑖𝑘 are, respectively, the 𝑘-th components of 𝑧, the mean vector 𝜇𝑖 ∈ ℝ𝑚,
and the corresponding variance 𝑝𝑖𝑘 ∈ ℝ. Because of the nature of the Gaussian function, it is obvious that 𝜎(𝑧) is bounded, e.g.
||𝜎(𝑧)|| ≤ 𝜁𝜎 . On the other hand, according to17, any smooth function 𝑓 (⋅) over the set Ω𝑁 can be represented by

𝑓 (𝑧) = 𝑊 ⊤𝜎(𝑧) + 𝜖(𝑧) (2)

where 𝜖(𝑧) ∈ ℝ𝑛 is a bounded functional reconstruction error, and 𝑊 ∈ ℝ×𝑛 is a bounded constant ideal weight matrix.

Property 1. For any smooth function 𝑓 (𝑧), with a fixed number of neurons, there exists an ideal weight matrix 𝑊 , to make the
approximation error equal to the structural error, such that the following bound can be considered over the compact set Ω𝑁

32

||𝑊 ||

2
𝐹 = 𝑡𝑟(𝑊 ⊤𝑊 ) ≤ 𝑊𝐵 , ||𝜖(𝑧)|| ≤ 𝜖𝑁

where 𝑊𝐵 , 𝜖𝑁 ∈ ℝ+ are positive constants. ⊲

From (1) and (2), the function approximation error can be written as

𝑓 − 𝑓 = 𝑊̃ ⊤𝜎(𝑧) + 𝜖(𝑧) (3)

where 𝑊̃ (𝑡) ∈ ℝ×𝑛, defined as 𝑊̃ ≜ 𝑊 − 𝑊̂ , denotes the estimate mismatch for the ideal weight matrix.
In this paper, the Euclidean norm of a vector 𝑥 ∈ ℝ𝑛 is denoted by ‖𝑥‖ =

√

∑𝑛
𝑖=1 𝑥

2
𝑖 .ℝ

+ denotes the positive real values. For a
matrix𝐴 ∈ ℝ𝑛×𝑛, 𝜆min(𝐴) and 𝜆max(𝐴), respectively, denote the minimum and maximum eigenvalues of𝐴. ||𝐴|| =

√

𝜆max(𝐴⊤𝐴)
is the induced norm, ||𝐴||𝐹 is the Frobenius norm (F-norm), and 𝑡𝑟(𝐴) denotes the trace of 𝐴. 𝑛 represents a class of functions
or mappings that are 𝑛 times differentiable. ∇(⋅) denotes the gradient of the function with respect to its argument.

2.2 Problem Formulation
An 𝑛-link robotic manipulator modeled by the following Euler-Lagrange equation33 is considered:

𝑀(𝑞)𝑞 + 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝐹 (𝑞̇) + 𝐺(𝑞) + 𝑇𝑑 = 𝜏 (4)

where 𝑞 = [𝑞1, 𝑞2,⋯ , 𝑞𝑛]⊤, 𝑞̇ = [𝑞̇1, 𝑞̇2,⋯ , 𝑞̇𝑛]⊤, 𝑞 = [𝑞1, 𝑞2,⋯ , 𝑞𝑛]⊤ ∈ ℝ𝑛 are, respectively, the vectors of angular position,
velocity, and acceleration of joints with 𝑞(𝑡) being the only states that are available for measurement; 𝑀(𝑞) ∈ ℝ𝑛×𝑛 represents
the inertia matrix; 𝐶(𝑞, 𝑞̇) ∈ ℝ𝑛×𝑛 is the centrifugal-Coriolis matrix; 𝐺(𝑞) ∈ ℝ𝑛 denotes the gravity vector; 𝐹 (𝑞̇) ∈ ℝ𝑛 is the
friction vector; 𝑇𝑑 ∈ ℝ𝑛 and 𝜏 ∈ ℝ𝑛 represent the external disturbances and the output torque of actuator, respectively.

This work addresses the trajectory tracking problem for systems (4) under input constraints, the influence of model uncertain-
ties and external disturbances. To be more specific, the control objective is to steer the position and velocity of each joint of the
manipulator to follow a certain given time-dependent 2 function 𝑞𝑑(𝑡), given only the measurement of 𝑞 and nominal model
denoted by 𝑀𝑜(𝑞), 𝐶𝑜(𝑞, 𝑞̇), 𝐹𝑜(𝑞̇), 𝐺𝑜(𝑞). Obviously, taking into account the limited actuator torque, the manipulator system is
only able to track a certain type of desired trajectory and handle bounded disturbances and model uncertainties.

The input constraints are given in the context of the limitation of the angular velocity and the norm-bound of the actuator
torque and verify the following assumptions.

Assumption 1. The limitations of the angular and angular velocity of the manipulator joints are known and given in the form of:

𝛽𝑞 ≜ max
𝑖∈I𝑛

sup
𝑡≥0

{𝑞𝑖(𝑡)} ∈ ℝ+, 𝛽 ≜ max
𝑖∈I𝑛

sup
𝑡≥0

{𝑞̇𝑖(𝑡)} ∈ ℝ+, I𝑛 ≜ {1,⋯ , 𝑛} ⊲

Remark 1. In practical applications, the upper bound of the angle 𝑞𝑖 is determined by the mechanical design, and 𝑞𝑖 can always
be expressed as the value of [−𝜋, 𝜋] rad. On the other hand, the angular velocity 𝑞̇𝑖 is bounded by the power of the motor34.
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For specific manipulator systems, such as the Kinova selected in this paper, its parameters can be obtained from the official
configuration as 𝛽𝑞 = 𝜋 rad and 𝛽 = 0.2𝜋 rad/s. These two types of variables are trivial to obtain and exist for all practical
manipulator systems.

Without loss of generality, the mismatches between the true plant and the nominal model are represented by Δ𝑀(𝑞), Δ𝐶(𝑞, 𝑞̇),
Δ𝐹 (𝑞̇), Δ𝐺(𝑞) which are assumed to be additive, namely verifying the following relations:

𝑀𝑜(𝑞) ≜ 𝑀(𝑞) + Δ𝑀(𝑞), 𝐶𝑜(𝑞, 𝑞̇) ≜ 𝐶(𝑞, 𝑞̇) + Δ𝐶(𝑞, 𝑞̇), 𝐹𝑜(𝑞̇) ≜ 𝐹 (𝑞̇) + Δ𝐹 (𝑞̇), 𝐺𝑜(𝑞) ≜ 𝐺(𝑞) + Δ𝐺(𝑞) (5)

and bounded. The boundary of parametric uncertainties will be clarified later.
As for the external disturbances 𝑇𝑑 , it is assumed that:

Assumption 2. The external disturbances 𝑇𝑑 and its time derivative 𝑇̇𝑑 are both norm-bounded and verified by sup𝑡≥0‖𝑇𝑑‖ ≤ 𝜁𝑑
for some positive constant 𝜁𝑑 known a prior. ⊲

Substituting (5) into (4), the dynamics model is rewritten as:

𝑀𝑜(𝑞)𝑞 + 𝐶𝑜(𝑞, 𝑞̇)𝑞̇ + 𝐹𝑜(𝑞̇) + 𝐺𝑜(𝑞) = 𝜏 + 𝛿 (6)

where 𝛿 ∶= Δ𝑀(𝑞)𝑞 + Δ𝐶(𝑞, 𝑞̇)𝑞̇ + Δ𝐹 (𝑞̇) + Δ𝐺(𝑞) − 𝑇𝑑 stands for the total effect of uncertainties and external disturbances,
usually termed as “lumped uncertainties" in the literature. The desired trajectory 𝑞𝑑(𝑡) = [𝑞𝑑1(𝑡),⋯ , 𝑞𝑑𝑛(𝑡)]⊤ ∈ ℝ𝑛 is determined
by users, satisfying that sup𝑡≥0||𝑄𝑑(𝑡)|| = 𝜁𝑞 with 𝑄𝑑(𝑡) = [𝑞⊤𝑑 , 𝑞̇

⊤
𝑑 , 𝑞

⊤
𝑑 ,

...
𝑞 ⊤

𝑑 ]
⊤ ∈ ℝ4𝑛 and positive constant 𝜁𝑞 . Let positive

constant vector 𝐵𝑣 = [𝐵𝑣1,⋯ , 𝐵𝑣𝑛]⊤ ∈ ℝ𝑛, 𝐵𝑎 = [𝐵𝑎1,⋯ , 𝐵𝑎𝑛]⊤ ∈ ℝ𝑛 denote the upper bounds of 𝑞̇𝑑(𝑡) and 𝑞𝑑(𝑡) as

𝐵𝑣𝑖 ≜ sup
𝑡≥0

||𝑞̇𝑑𝑖(𝑡)||, 𝐵𝑎𝑖 ≜ sup
𝑡≥0

||𝑞𝑑𝑖(𝑡)||, ∀𝑖 ∈ I𝑛 (7)

It is reasonable to require that 𝐵𝑣 should satisfy ‖𝐵𝑣‖ ≤
√

𝑛𝛽, in which 𝛽 represents the physical limitation of the actuator that
is defined in the Assumption 1.

Below we listed a few properties4 of manipulator systems that are widely recognized and fundamental for the subsequent
design and analysis.

Property 2. For all 𝑥 ∈ ℝ𝑛, the time derivative of inertia matrix 𝑀(𝑞) and the centrifugal-Coriolis matrix 𝐶(𝑞, 𝑞̇) satisfy the
following skew-symmetric relationship:

𝑥⊤(𝑀̇(𝑞) − 2𝐶(𝑞, 𝑞̇))𝑥 = 0 ⊲

Property 3. The positive-definite symmetric inertia matrix 𝑀(𝑞), the centrifugal-coriolis matrix 𝐶(𝑞, 𝑞̇), the friction 𝐹 (𝑞̇) and
gravitational vector 𝐺(𝑞) satisfy the following inequalities:

𝑚||𝑥||2 ≤ 𝑥⊤𝑀(𝑞)𝑥 ≤ 𝑚||𝑥||2, ||𝐶(𝑞, 𝑞̇)|| ≤ 𝜁𝑐||𝑞̇||, ||𝐹 (𝑞̇)|| ≤ 𝜁𝑓𝑑 ||𝑞̇|| + 𝜁𝑓𝑠 , ||𝐺(𝑞)|| ≤ 𝜁𝑔 , ∀𝑥 ∈ ℝ𝑛 (8)

for some known constants 𝜁𝑐 , 𝜁𝑓𝑑 , 𝜁𝑓𝑠 , 𝜁𝑔 ∈ ℝ+, and 𝑚, 𝑚 ∈ ℝ+ are respectively defined as

𝑚≜ min
∀𝑞∈ℝ𝑛

𝜆𝑚𝑖𝑛(𝑀), 𝑚≜ max
∀𝑞∈ℝ𝑛

𝜆𝑚𝑎𝑥(𝑀). ⊲

In this paper, we propose a novel robust feedback controller

𝜏(𝑡) ≜ [𝜏1,⋯ , 𝜏𝑛] ∈ ℝ𝑛

that simultaneously tackles three major challenges, namely the effect of “lumped uncertainties”, input constraint and the immea-
surable angular velocity. To the best of our knowledge, this paper is the first one that takes into account for all these difficulties
at the same time, regardless of the intensive study of the control problem of Euler-Lagrange system.

Define 𝑒(𝑡) ≜ 𝑞(𝑡)− 𝑞𝑑(𝑡), 𝑒̇(𝑡) ≜ 𝑞̇(𝑡)− 𝑞̇𝑑(𝑡) and 𝑒(𝑡) ≜ 𝑞(𝑡)− 𝑞𝑑(𝑡) to denote the error signals, 𝜏𝑁 ∈ ℝ to represent the upper-
bound of the torque of the actuator. Note that, since 𝑞̇(𝑡) is immeasurable under the setting of this paper, the only available error
signal for feedback is 𝑒(𝑡). Now, the problem considered in this paper is formally stated as follows:

Problem 1. Suppose Assumptions 1-2 hold, given only angular position 𝑞(𝑡), design a dynamic feedback controller 𝜏 =
[𝜏1,⋯ , 𝜏𝑛]⊤ ∈ ℝ𝑛 for System (4) such that the output of the controller are bounded by the limits of actuators, i.e.

|𝜏𝑖(𝑡)| ≤ 𝜏𝑁 , ∀𝑖 ∈ I𝑛
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for all 𝑡 ≥ 0, and the tracking errors of the closed-loop system asymptotically convergent to a ball-neighborhood of the origin
whose radius depends on the size of “lumped uncertainties”, that is

lim
𝑡→∞

𝑒𝑖(𝑡) ≤ 𝛼̄𝑖(Δ𝑓𝑖), lim
𝑡→∞

𝑒̇𝑖(𝑡) ≤ 𝛽𝑖(Δ𝑓𝑖), ∀𝑖 ∈ I𝑛 (9)

for some class- functions 𝛼̄𝑖(⋅) and 𝛽𝑖(⋅), where Δ𝑓𝑖 is the 𝑖-th element of Δ𝑓 = [Δ𝑓1,⋯ ,Δ𝑓𝑛]⊤ ∈ ℝ𝑛 defined in (28). ⊲

Remark 2. It’s worth pointing out that, different from the existing methods in the literature, here we do not bound the input
by a saturation function. Instead, by appropriate choice of the tuning gains, the proposed algorithm guarantees that the control
input will not exceed the boundary 𝜏𝑁 . In this way, the performance of the system will not degrade in practical implementation.
Furthermore, the proposed scheme provides some insights into the performance limitation of the system.

3 OBSERVER DESIGN

In this section, an extended state observer35 is designed to obtain the estimate of angular velocity, which is not available for
direct measurement. The results in this section will serve as a building block for the analysis and design of the NN-based adaptive
controller of the next section.

First, introducing 𝑥𝑖1 ≜ 𝑞𝑖, 𝑥𝑖2 ≜ 𝑞̇𝑖 and denoting 𝑇𝑖 the 𝑖-th row of the matrix 𝑀𝑜(𝑋1)−1 as follows

𝑞 ≜ [𝑥11, 𝑥21,⋯ , 𝑥𝑛1]⊤ = 𝑋1 ∈ ℝ𝑛, 𝑞̇ ≜ [𝑥12, 𝑥22,⋯ , 𝑥𝑛2]⊤ = 𝑋2 ∈ ℝ𝑛, 𝑀𝑜(𝑋1)−1 ≜ [𝑇 ⊤
1 ,⋯ , 𝑇 ⊤

𝑛 ]
⊤ = 𝑇 ∈ ℝ𝑛×𝑛 (10)

dynamics (6) can be recast as 𝑛 coupled second-order subsystems whose dynamic is governed by

𝑥̇𝑖1 = 𝑥𝑖2, 𝑥𝑖1(0) = 𝑞𝑖(0)
𝑥̇𝑖2 = 𝐵𝑓𝑥𝑖3 + 𝑇𝑖[𝜏 − 𝐺𝑜(𝑋1)], 𝑥𝑖2(0) = 𝑞̇𝑖(0) (11)

where 𝑥𝑖3 is a normalized extended state containing all the decoupled terms and lumped uncertainties defined as

𝑥𝑖3 =
1
𝐵𝑓

𝑇𝑖[−𝐶𝑜(𝑋1, 𝑋2)𝑋2 − 𝐹𝑜(𝑋2) + 𝛿] (12)

where 𝐵𝑓≜max𝑖∈I𝑛
sup𝑡≥0 𝑇𝑖[−𝐶𝑜(𝑋1, 𝑋2)𝑋2 − 𝐹𝑜(𝑋2) + 𝛿]. Clearly, |𝑥𝑖3| ∈ [0, 1).

Remark 3. A conservative value of 𝐵𝑓 can be easily obtained by finding the upper-bounded of term 𝑇𝑖, 𝐶𝑜, 𝑋2, 𝐹𝑜(𝑋2) and 𝛿
according to Assumption 1, 2 and Property 3, respectively.

Use 𝑥̂𝑖 ≜ [𝑥̂𝑖1, 𝑥̂𝑖2, 𝑥̂𝑖3]⊤ to denote the estimate 𝑥𝑖 ≜ [𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3]⊤, an ESO35 for 𝑖-th subsystem defined in (11) is designed as

̇̂𝑥𝑖1 = 𝑥̂𝑖2 +
𝑘𝑖1
𝑙
𝑔1(𝑙2(𝑥𝑖1 − 𝑥̂𝑖1))

̇̂𝑥𝑖2 = 𝐵𝑓 𝑥̂𝑖3 + 𝑇𝑖[𝜏 − 𝐺𝑜(𝑋1)] + 𝑘𝑖2𝑔2(𝑙2(𝑥𝑖1 − 𝑥̂𝑖1))

̇̂𝑥𝑖3 =
1
𝐵𝑓

𝑘𝑖3𝑙𝑔3(𝑙2(𝑥𝑖1 − 𝑥̂𝑖1)) (13)

with constant gain 𝑙 ∈ ℝ, and the state initialization 𝑥̂𝑖(0) of observer expected to be inside a hyper-sphere of origin.
If no knowledge of the observer state is available, the best choice for initialization is zero. However, if a priori estimation is

possible, we may set the initial values for 𝑥̂𝑖 to be those estimates for improved performance.
In addition, g𝑗(𝜈) ∶ ℝ → ℝ is a nonlinear function29 constructed as

g𝑗(𝜈) =
{

𝜈, |𝜈| ≤ 1
|𝜈|𝜃𝑗 sign(𝜈), |𝜈| ≥ 1

(14)

where 𝜃𝑗 = 𝑗𝜃 − (𝑗 − 1), 𝑗 ∈ {1, 2, 3}. 𝜃 and 𝑙 are tuning gains to be determined later. 𝑘𝑖𝑗 , 𝑖 ∈ I𝑛, 𝑗 ∈ {1, 2, 3}, are constants
chosen such that the following matrix

𝐾𝑖 =
⎛

⎜

⎜

⎝

−𝑘𝑖1 1 0
−𝑘𝑖2 0 1

−𝐵𝑓𝑘𝑖3 0 0

⎞

⎟

⎟

⎠

∈ ℝ3×3 (15)

is Hurwitz.
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Considering the constraints of inputs, it is essential to ensure the boundedness of the state of the observer (13) since it will
be employed in the subsequent design of the controller. Therefore, we impose a projection operator on the state 𝑥̂𝑖 as follows:

𝑃𝑟( ̇̂𝑥𝑖) =

⎧

⎪

⎨

⎪

⎩

̇̂𝑥𝑖, if‖Λ𝑥̂𝑖‖ < 𝑆𝑖 or
‖Λ𝑥̂𝑖‖ = 𝑆𝑖 and ̇̂𝑥⊤𝑖 Λ

⊤Λ𝑥̂𝑖 ≤ 0
̇̂𝑥𝑖 −

Λ⊤Λ𝑥̂𝑖𝑥̂⊤𝑖 Λ
⊤Λ

𝑥̂⊤𝑖 Λ⊤ΛΛ⊤Λ𝑥̂𝑖
̇̂𝑥𝑖, otherwise

(16)

where Λ ∈ ℝ3×3 is defined as Λ⊤Λ ≜ 𝐿−1𝑃 −1
𝑖 𝐿−1, with 𝐿 and 𝑃𝑖 are symmetric positive definite matrix defined in (A2) and

(A5), respectively. 𝑆𝑖 denotes a hyper-sphere inside which we aim to keep the trajectory of the observer, assuming the initial
condition of the observer is inside it.

Remark 4. Thanks to the physical boundary of 𝑞(𝑡), the boundaries of 𝑞̇(𝑡) provided in the Assumption 1, and re-scaled operation
imposed on 𝑥𝑖3, it is easy to find a conservative value of 𝑆𝑖, for instance

𝑆𝑖 = ‖Λ‖
√

𝛽2𝑞 + 𝛽2 + 1 (17)

Remark 5. For the convenience of showing the error convergence of the observer, we use the standard projection operator36

with little modification, but it has the same functionality as the standard one, i.e., variables are limited by the prescribed bounds.
The proof is given in Appendix A.1.

Define the estimation error as 𝑥̃𝑖1 ≜ 𝑥𝑖1(𝑡) − 𝑥̂𝑖1(𝑡), 𝑥̃𝑖2 ≜ 𝑥𝑖2(𝑡) − 𝑥̂𝑖2(𝑡), with 𝑖 ∈ I𝑛. The convergence property guaranteed by
the Observer (13) is summarized in the next Theorem 1.

Theorem 1. Suppose Assumption 2 holds, consider Subsystem (11) as well as the Observer (13) and (16), there exist 𝜖𝜃 ∈ (0, 1)
and 𝑙∗ > 0 such that for any 𝜃 ∈ [1 − 𝜖𝜃 , 1 + 𝜖𝜃], 𝑙 ∈ [𝑙∗,∞), the estimation errors 𝑥̃𝑖1(𝑡) and 𝑥̃𝑖2(𝑡) will asymptotically converge
to the neighborhood of origin, i.e.

lim
𝑡→∞

|𝑥̃𝑖1| ≤ 𝜅𝑖(𝛿, 𝑙), lim
𝑡→∞

|𝑥̃𝑖2| ≤ 𝜅𝑖(𝛿, 𝑙), ∀𝑖 ∈ I𝑛 (18)

where 𝜅𝑖(⋅, ⋅) and 𝜅𝑖(⋅, ⋅) are some class  functions1 , and 𝛿 is the lumped uncertainty, consisting of model uncertainties and
external disturbances, defined in (6). ⊲

The proof of Theorem 1 is presented in Appendix A.1.

4 NEURAL NETWORK-BASED ADAPTIVE CONTROLLER

Utilizing the estimate of the angular velocity 𝑞̇ in Section 3, an NN-based adaptive controller is finally proposed to achieve
trajectory tracking. Detailed block diagram of the proposed control scheme is shown in Fig. 1. As we are about to demonstrate,
the control algorithm is feasible and capable of addressing Problem 1.

In view of (11), the vector of estimation error can be defined as

𝑋̃1 ≜ 𝑋1 − 𝑋̂1 = [𝑥̃11, 𝑥̃12,⋯ , 𝑥̃1𝑛]⊤, ̇̃𝑋1 = 𝑋̃2 ≜ 𝑋2 − 𝑋̂2 = [𝑥̃21, 𝑥̃22,⋯ , 𝑥̃2𝑛]⊤, (19)

and 𝑒 ∶= 𝑋̂1 − 𝑞𝑑 , ̇̂𝑒 ∶= ̇̂𝑋1 − 𝑞̇𝑑 . We start by introducing two auxiliary signals as follows:

𝑟 = ̇̂𝑒 + 𝛼
1 + 𝛽′

Tanh(𝑒) + 𝛼𝜒(𝑒) (20)

𝜒̇ = −𝐾1𝑟 −𝐾2𝜒 + 𝛼Tanh(𝑒), 𝜒(0) = 0 (21)

where 𝛼 ∈ ℝ+ is a constant tuning gain, 𝐾1, 𝐾2 ∈ ℝ𝑛×𝑛 are diagonal positive-definite gain matrices, 𝛽′ ≜ 2𝛽 ≥ max𝑖∈I𝑛
||𝑒̇𝑖||

denotes the upper bound of the tracking error of angular velocity, and the bounded vector function Tanh(⋅) ∶ ℝ𝑛 → ℝ𝑛 is defined
as Tanh(𝑣) ≜ [tanh(𝑣1),⋯ , tanh(𝑣𝑛)]⊤ for any 𝑛-dimensional vector 𝑣.

Designing auxiliary signals 𝑟 and 𝜒 serves the purpose of enabling our proposed controller to naturally meet input constraint
requirements and facilitate stability analysis. The function of these auxiliary signals is to ensure that the controller’s output
signals are subject to soft constraints, thereby guaranteeing that the predefined input constraints are not violated.

1A NL class function 𝑓 (𝑥, 𝑦) ∶ ℝ×ℝ → ℝ+ is defined as the function satisfying as follows conditions: i): while 𝑦 is fixed, 𝑓 (𝑥, 𝑦) increases as 𝑥 increasing; ii): while
𝑥 is fixed, 𝑓 (𝑥, 𝑦) decreases as 𝑦 increasing; iii): 𝑓 (0, 𝑦) > 0.
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FIGURE 1 The block diagram of the NN-based adaptive controller.

Thanks to the fact that 𝑒 = 𝑒 − 𝑋̃1, we have that the dynamic of 𝑟 is governed by

𝑟̇ = 𝑒 − ̈̃𝑋1 +
𝛼

1 + 𝛽′
Cosh−2(𝑒) ⋅ 𝑒̇ − 𝛼𝐾1𝑟 − 𝛼𝐾2𝜒 + 𝛼2Tanh(𝑒) (22)

where the matrix function Cosh(⋅) ∶ ℝ𝑛 → ℝ𝑛×𝑛 is defined as Cosh(𝑥) ≜ diag{cosh(𝑥1),⋯ , cosh(𝑥𝑛)} for any 𝑛-dimensional
vector 𝑥. Now, subtracting 𝑀(𝑞)𝑞𝑑 from both sides of (4), we have

𝑀(𝑞)𝑒= 𝜏 − 𝐶(𝑞, 𝑞̇)𝑞̇−𝐹 (𝑞̇)−𝐺(𝑞)−𝑇𝑑−𝑀(𝑞)𝑞𝑑 (23)

Then, we substitute (22) into (23) to eliminate 𝑒 and rewrite the dynamic equation in terms of the auxiliary signal 𝑟 as

𝑀(𝑞)𝑟̇ = −𝐶(𝑞, 𝑞̇)𝑟−𝛼𝑀(𝑞)𝐾1𝑟− 𝑇𝑑 + 𝜏 + ℎ (24)

where we have replaced 𝐶(𝑞, 𝑞̇)𝑞 with 𝐶(𝑞, 𝑞̇)𝑟 and put the rest of terms into the variable ℎ, defined by

ℎ ≜ 𝑀(𝑞)[ 𝛼
1 + 𝛽′

Cosh−2(𝑒)𝑒̇ − 𝛼𝐾2𝜒 + 𝛼2Tanh(𝑒) − 𝑞𝑑 − ̈̃𝑋1] + 𝐶(𝑞, 𝑞̇)(𝑟 − 𝑞̇) −𝐹 (𝑞̇)−𝐺(𝑞) (25)

Next, after some calculations, we split ℎ into two parts (one part is known while the other collects the effect of parametric
uncertainties and estimation error, which will be compensated by an adaptive NN-based term), that is ℎ ∶= ℎ̂ + ℎ̃, and ℎ̂ and ℎ̃
are given, respectively, by

ℎ̂ = 𝑀𝑜(𝑞𝑑)[
𝛼

1 + 𝛽′
Cosh−2(𝑒) ̇̂𝑒 − 𝛼𝐾2𝜒 + 𝛼2Tanh(𝑒) − 𝑞𝑑] + 𝐶𝑜(𝑞𝑑 , ̇𝑞𝑑)[−𝑞̇𝑑 +

𝛼
1 + 𝛽′

Tanh(𝑒) + 𝛼𝜒] −𝐹𝑜(𝑞̇𝑑) − 𝐺𝑜(𝑞𝑑) (26)

and

ℎ̃ =𝑀̃[ 𝛼
1 + 𝛽′

Cosh−2(𝑒)𝑒̇ − 𝛼𝐾2𝜒 + 𝛼2Tanh(𝑒) − 𝑞𝑑] +
𝛼

1 + 𝛽′
Cosh−2(𝑒)𝑀𝑜(𝑞𝑑)(𝑒̇ − ̇̂𝑒)

+ 𝐶̃[−𝑞̇𝑑 +
𝛼

1 + 𝛽′
Tanh(𝑒) + 𝛼𝜒] − 𝐶(𝑞, 𝑞̇) ̇̂𝑒 − 𝐹 − 𝐺̃ −𝑀(𝑞) ̈̃𝑋1 (27)

where 𝑀𝑜, 𝐶𝑜, 𝐺𝑜 and 𝐹𝑜 are nominal model introduced in (5). 𝑀̃ , 𝐶̃ , 𝐹 and 𝐺̃ denote the error between the nominal and true
value, and are defined as

Σ̃=Σ(𝑞, 𝑞̇)−Σ𝑜(𝑞𝑑 , 𝑞̇𝑑)=Σ(𝑞, 𝑞̇)−Σ(𝑞𝑑 , 𝑞̇𝑑)−ΔΣ(𝑞𝑑 , 𝑞̇𝑑)

for all Σ ∈ {𝑀,𝐶, 𝐹 ,𝐺}.

Remark 6. Note that, ℎ̂ is an available term as it only depends on 𝑞𝑑 , 𝑞̇𝑑 , 𝜒 , 𝑒, ̇̂𝑒 and nominal model 𝑀𝑜, 𝐶𝑜, 𝐺𝑜, 𝐹𝑜 given in
(5). One feature that distinguishes the proposed method from existing ones is that we take full advantage of the prior known
information of the plant model and available signals to design the controller. In this way, when compared to the model-free
method, the proposed controller can automatically achieve better performance when the nominal model is relatively accurate.
Moreover, 𝑞𝑑 and 𝑞̇𝑑 are defined by users and hence not prone to be augmented with noise.

Remark 7. According to Assumptions 1 and 2, Property 3, the boundedness of ℎ̂, ℎ̃ are not difficult to obtain through the analysis
of boundedness of each term in (26) and (27).
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Finally, we have the dynamics in terms of 𝑟 as

𝑀(𝑞)𝑟̇ = −𝐶(𝑞, 𝑞̇)𝑟̇ − 𝛼𝑀(𝑞)𝐾1𝑟 + ℎ̂ + Δ𝑓 + 𝜏 with Δ𝑓 = ℎ̃ − 𝑇𝑑 (28)

which lumps parametric uncertainties ℎ̃ and external disturbances 𝑇𝑑 together.
To compensate the “lumped uncertainties” with a RBF-NN, Δ𝑓 is parameterized into a form similar to (2) as follows

Δ𝑓 = 𝑊 ⊤𝜎(𝑧) + 𝜖(𝑧) (29)

where 𝑧 = [1, 𝑋̂1, 𝑋̂2, 𝑞𝑑 , 𝑞̇𝑑 , 𝑞𝑑]⊤ ∈ ℝ5𝑛+1, and the definitions of the weight matrix 𝑊 ∈ ℝ×𝑛, the activation function
𝜎(𝑧) ∈ ℝ and the small mismatch 𝜖(𝑧) ∈ ℝ𝑛 are given in Section 2.

Let the estimate of Δ𝑓 given by

Δ𝑓 = 𝑊̂ ⊤𝜎(𝑧) (30)

where 𝑊̂ ≜ [𝑊̂1,⋯ , 𝑊̂𝑛] ∈ ℝ𝑙×𝑛 denotes the estimate of the ideal weight matrix 𝑊 . The update law of 𝑊̂ are

̇̂𝑊𝑖 =

⎧

⎪

⎨

⎪

⎩

Γ𝑤̇𝑖, if 𝑔𝑖 < 0 or 𝑔𝑖 = 0 with ̇̂𝑊 ⊤
𝑖 ∇𝑔𝑖 ≤ 0

Γ𝑤̇𝑖 − Γ
∇𝑔𝑖∇𝑔⊤𝑖
∇𝑔⊤𝑖 Γ∇𝑔𝑖

Γ𝑤̇𝑖, otherwise

𝑤̇ = 𝜎(𝑧) ̇̂𝑒⊤ + 𝜎(𝑧)( 𝛼
1 + 𝛽′

Tanh(𝑒) + 𝛼𝜒)⊤ − 𝜌𝑊̂ (31)

where 𝜌, Γ ∈ ℝ are positive constants, 𝑤 ≜ [𝑤1,⋯ , 𝑤𝑛] ∈ ℝ𝑙×𝑛, ̇̂𝑒 ≜ ̇̂𝑋1 − 𝑞̇𝑑 , and 𝑔𝑖(𝑊̂𝑖) = 𝑊̂ ⊤
𝑖 𝜎(𝑧) − 𝜄𝑖𝜏𝑁 for 𝑖 ∈ I𝑛. Define

𝜄 ≜ [𝜄1, 𝜄2,⋯ , 𝜄𝑛]⊤. Note that, the adaptive law (31) leads to a bounded estimateΔ𝑓 by employing a standard projection operation.
More importantly, the bounds can be adjusted by tuning the parameter 𝜄𝑖 ∈ (0, 1) which is a constant parameter determining the
proportion of control effort that is devoted to dealing with the uncertainties and is described in Section 5.

Remark 8. The number of neurons and the value of 𝑝𝑖, which is the variance of the activation function, are related to the size of
approximation error 𝜖𝑁 and should be selected carefully. But the optimal design of NN is out of scope of this paper.

Referring to the dynamics (28), the overall control law is proposed as:

𝜏 = 𝐾1𝜒 − ℎ̂ − Δ𝑓 (32)

with 𝐾1 being a positive tuning gain matrix and variables 𝜒 , ℎ̂, Δ𝑓 are defined in (21), (26) and (30), respectively.
The requirement of the tuning parameters and the characteristic of the proposed controller subject to Problem 1 described in

Section 2 will be rigorously discussed in the following section.

5 ANALYSIS OF CONVERGENCE OF TRACKING ERROR AND BOUNDEDNESS OF THE
CONTROL INPUT

This section is first devoted to the stability analysis of the closed-loop system, and then the boundedness of control input 𝜏 is
rigorously proved. The main properties of the proposed controller are summarized in the following theorem.

Theorem 2. Suppose Assumptions 1-2 hold, the trajectories of the closed-loop system consisting of (4), (13), (16), (31) and
(32) are all bounded and the tracking error will asymptotically converge to the neighborhood of origin IF the control gains 𝛼,
𝐾1 and 𝐾2 satisfy the following conditions:

𝛼 >
5 + 5𝛽′

4
(33)

𝜆𝑚𝑖𝑛(𝐾1) >
1

2𝛼𝑚
(34)

𝜆𝑚𝑖𝑛(𝐾2) > 0 (35)

Furthermore, the norm bound of the tracking error is proportional to the tuning parameters and the ”lumped uncertainties”. ⊲

The Proof of Theorem 2 is presented in Appendix A.2.
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Next, we are going to derive the conditions on tuning parameters to ensure the control input 𝜏 is bounded and, moreover,
bounded by the actuator limits 𝜏𝑁 stated in Problem 1. To this end, a lemma on the boundedness 𝜉(𝑡) is first presented, which is
fundamental to the sequel analysis.

Lemma 1. Suppose Assumption 1 hold, the auxiliary signal 𝜒(𝑡) governed by (21) satisfies ‖𝜒(𝑡)‖ ≤ 1 for all 𝑡 ≥ 0, if tuning
gains 𝛼, 𝐾1 and 𝐾2 meet the following condition:

𝜆𝑚𝑖𝑛(𝐾2) ≥ 𝜆𝑚𝑎𝑥(𝐾1)(𝐵𝑜𝑣 +
𝛼

1 + 𝛽′
) + (1 − 𝜆𝑚𝑖𝑛(𝐾1))𝛼 (36)

where 𝐵𝑜𝑣 denotes the norm bound of the error of estimated velocity ‖

̇̂𝑒‖, whose existence is guaranteed by (7) and the projection
operation in (16). ⊲

The proof of Lemma 1 can be found in Appendix A.4. Given 𝜒(𝑡) norm-bounded by 1, the following theorem presents two
more conditions on tuning parameters such that one can freely render the upper bounds of the control effort.

Theorem 3. Suppose Assumptions 2 hold and the conditions in Theorem 2 and Lemma 1 are verified. Given 𝜏𝑁 ≥ 𝜏∗𝑁 > 0, if
the following inequalities

0 < 𝜄𝑖 ≤ 1 −
𝑔1𝑖(𝛼,𝐾1𝑖, 𝐾2𝑖) + 𝑔2𝑖(𝐵𝑣, 𝐵𝑎)

𝜏𝑁
(37)

are verified by proper choices of 𝛼, 𝐾1, 𝐾2, 𝐵𝑣 and 𝐵𝑎, then the control law 𝜏 given by (32) is guaranteed to be bounded by the
𝜏𝑁 , that is

|𝜏𝑖| ≤ 𝜏𝑁 , for all 𝑖 ∈ I𝑛
where 𝑔𝑗𝑖, 𝑗 = 1, 2, are defined in (A21) and (A22), 𝜏∗𝑁 is a known constant given in (A28). ⊲

The Proof of Theorem 3 is provided in Appendix A.3.

Remark 9. It can be seen from the right-hand side of (37), in the case of a fixed 𝜏𝑁 , that the greater the term related to the
uncertainties of the model (i.e. 𝑔1𝑖), the smaller the feasible range of 𝐵𝑣 and 𝐵𝑎 (i.e. 𝑔2𝑖). This is consistent with the intuition in
control practice since given a limited control effort 𝜏𝑁 , the trade-off between the performance and robustness of the controlled
plant is inevitable. However, for many existing adaptive-based and/or neural network-based techniques, the relation between the
control specifications and tuning parameters is implicit. While, for the presented algorithm, one can easily decrease 𝜄 to allocate
more control efforts to handle the uncertainties rather than to achieve fast and accurate tracking, and vice versa.

Remark 10. For the proposed controller, adjusting control gains 𝛼, 𝐾1, and 𝐾2 is necessary to solve Problem 1. Simulations
show that a solution exists under reasonable model uncertainties and desired trajectory settings. While trial and error can address
the problem, if the conditions (33), (34), (35) and (36), are satisfied, we offer a parameter selection guideline. First, select an
appropriate 𝛼 based on condition (33) for desired error convergence precision. Smaller 𝛼 leads to better error convergence.
However, from condition (34), smaller 𝛼 results in a larger 𝐾1, potentially causing faster convergence of the tracking error with
larger overshoot, as per controller (32). 𝐾2’s choice follows similar principles in conditions (35) and (36). This guide helps users
adjust control parameters for the desired response.

6 NUMERICAL EXPERIMENT

We carry out numerical examples on a MATLAB/SIMULINK environment to demonstrate the effectiveness of our controller.
A fourth-order Runge-Kutta discretization method with sampling time 𝑇𝑠 = 0.001s is employed in all simulations.

Consider a two-link robot manipulator system37 Section III described by :

𝑀=
[

𝑀11 𝑀12
𝑀12 𝑀22

]

, 𝐶=
[

𝐶11 𝐶12
𝐶21 𝐶22

]

, 𝐹 =
[

𝐹1
𝐹2

]

, 𝐺=
[

𝐺1
𝐺2

]

where

𝑀11 = 𝑚1𝑙
2
1 + 𝑚2(𝑙21 + 𝑙22 + 2𝑙1𝑙2 cos 𝑞2) + 𝐼1 + 𝐼2, 𝑀12 = 𝑚2(𝑙22 + 𝑙1𝑙2 cos 𝑞2) + 𝐼2, 𝑀22 = 𝑚2𝑙

2
2 + 𝐼2

𝐶11 = −𝑚2𝑙1𝑙2𝑞̇2 sin 𝑞2, 𝐶12 = −𝑚2𝑙1𝑙2(𝑞̇1 + 𝑞̇2) sin 𝑞2, 𝐶21 = 𝑚2𝑙1𝑙2𝑞̇1 sin 𝑞2, 𝐶22 = 0,
𝐹1 = 0.5𝑞̇1, 𝐹2 = 0.5𝑞̇2, 𝐺1 = (𝑚1𝑙2 + 𝑚2𝑙1)𝑔 cos 𝑞1 + 𝑚2𝑙2𝑔 cos(𝑞1 + 𝑞2), 𝐺2 = 𝑚2𝑙2𝑔 cos(𝑞1 + 𝑞2)
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with 𝐼1 =
1
4
𝑚1𝑙21, 𝐼2 =

1
4
𝑚2𝑙22 and the mass, as well as the length parameters, of the manipulator are taken from the datasheet of

the Kinova Gen2 manipulator as 𝑚1 = 1.7 kg, 𝑚2 = 2.0 kg, 𝑙1 = 0.41 m, 𝑙2 = 0.41 m, 𝑔 = 9.8 m/s2. The desired trajectory to
be tracked is given by:

𝑞𝑑 = [sin(0.5𝑡) cos(0.5𝑡)]⊤.

Parameters of the controller (32) are set to be 𝐾1 = diag{1.8, 1.8}, 𝐾2 = diag{49.8, 49.8}, 𝛽 = 1.5, 𝛼 = 11 and 𝜄 = [0.5, 0.5]⊤,
while the parameters of RBF NN (30) are Γ = 30𝐼 , 𝑝𝑖𝑘 = 1.5, 𝜇𝑖 evenly located in [−3, 3], 𝜌 = 0.001. For the observer (16), we
choose 𝜃 = 0.7 and 𝑙 = 130. The lower and upper actuation saturation limits are given as -40 and 40 Nm, i.e., 𝜏𝑁 = 40.

Additional initialization values used in the sequel simulations are: 𝑞(0) = [0.5, 0.5]⊤ rad, 𝑞̇(0) = [0, 0]⊤ rad/s, 𝑊̂ (0) = 030×2,
𝑋̂1 = [0, 0]⊤ rad, 𝑋̂2 = [0, 0]⊤ rad/s and 𝑋̂3 = [0, 0]⊤.
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FIGURE 2 Trajectory tracking error in the nominal case.
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FIGURE 3 Time evolution of ‖𝑊̂ ‖𝐹 in the nominal case.

We compare our method against a state-of-the-art robust adaptive control scheme38. For the sake of comparison fairness,
we first tune both methods to achieve a comparable behavior (similar convergence speed with similar steady-state error) in the
absence of the input constraints, model uncertainties and disturbances.

As shown in Fig.2, let both methods track 𝑞𝑑 with sufficiently small error after around 0.5s, we obtain the gain parameters
of the robust adaptive controller38 are: 𝐾𝑝 = 10.6, 𝐾𝑑 = 15.1, 𝐾𝑟 = 0002, 𝐾𝛽 = 10, Γ𝑞 = 16.5, Γ𝑧 = 12.5. The performance
criteria show there is the root mean square error (RMSE) of tracking trajectories, defined as 𝐽 (𝑒(𝑡)) =

√

1
2
(𝑒21 + 𝑒22), in which

𝑒𝑖, 𝑖 = 1, 2, denote the tracking error of joint 𝑖. The input torque is illustrated in Fig. 4. Note that a robust controller has a large
overshoot during the transient period while the proposed method features a smooth maneuver that is kept in a small range, which
validates the effectiveness of the proposed controller. The convergence of the ‖𝑊̂ ‖𝐹 is illustrated in Fig. 3, where, to better
illustrate the convergence behavior of the neural network, we have extended the runtime to 100 seconds.
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FIGURE 4 Time evolution of the input torque of joints without actuator limitations.
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In the following simulation, we assess the influence of model uncertainties, external disturbances and input constraints on the
two algorithms, and therefore, show the strength of the proposed scheme. The choices of tuning parameters are kept the same
as the ideal case. Furthermore, a large model mismatch 𝜇𝑢𝑛𝑐 = 50% is selected in the following way to show the robustness of
the proposed algorithm:

𝑚′
1 = (1 + 𝜇𝑢𝑛𝑐)𝑚1, 𝑚′

2 = (1 + 𝜇𝑢𝑛𝑐)𝑚2, 𝑙1 = (1 + 𝜇𝑢𝑛𝑐)𝑙1, 𝑙2 = (1 + 𝜇𝑢𝑛𝑐)𝑙2

where 𝑚′
1, 𝑚

′
2, 𝑙

′
1, 𝑙

′
2 are the actual parameters considered in the manipulator system. Gaussian Noise with a mean of 5 rad and

variance of 5 rad2 is added to the input signal, starting from 15s. The limit of torque of actuators output is taken as 𝜏𝑁 = 40 Nm.
From Fig.5, one can immediately observe that the robust controller is no longer a stabilizing one. As a matter of fact, the

degradation of tracking performance or even instability due to the non-linearity introduced by the saturated operation on the
control signals are rather common phenomena in control. In this connection, our controller is completely free of this issue by
accounting for the limitations of the actuators at the beginning of the control law design. As shown in Fig.7, the proposed
controller indeed never exceeds the limitation of the actuator, while the robust method suffers from a fast switching between the
positive and negative boundaries. Apart from the loss of stability, the switching-like behavior of the torque may also damage
the actuators and waste energy. This implies the superiority of the proposed scheme. Naturally, if we further decrease the upper
bounds of the actuators 𝜏𝑁 , tuning parameters like 𝛼, 𝐾1 and 𝐾2 need to be re-selected, and the tracking ability of the controller
will be influenced as well. But as long as we have prior knowledge of the lower bounds of the actuator limits, the ISS with
respect to the lumped uncertainties and boundedness of the overall trajectories are always ensured by the proposed scheme.
Unlike in Fig. 3, the ‖𝑊̂ ‖𝐹 in Fig. 6 is unable to converge to a constant value, primarily due to the impact of model uncertainty
and external disturbances.
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FIGURE 5 Trajectory tracking error in non-ideal case.
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FIGURE 6 Time evolution of ‖𝑊̂ ‖𝐹 in non-ideal case.
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7 EXPERIMENT ON KINOVA GEN2 ROBOT

In this section, a real-world experiment is performed on a 6-DOF Kinova Gen2 robot arm (Kinova Inc., Canada) and shown in
Fig. 8, to further assess the performance of the proposed controller. The control algorithm is programmed in Python and C++,
and executed by a computer using the Ubuntu 18.04 Linux operating system, where the computer has 16.0 GB RAM and an
Intel Core i5-7300HQ CPU with 1.6 GHz. The computer communicates with the Kinova Gen2 robot through ROS Melodic
Morenia. For simplicity, only the second and third joints from shoulder to end-effector are used to test the proposed method.
A classical Kalman filtering algorithm39 is employed to address the noise signals present in the data collected by sensors. The
desired trajectories of joints are chosen as:

𝑞𝑑(𝑡) = [sin(0.5𝑡) + 1.5 sin(0.5𝑡)]⊤

which is feasible in the sense that perfect trajectory tracking does not require control efforts that exceed the actuator limits
𝜏𝑁 ≥ 10 Nm.

FIGURE 8 The Kinova Gen2 robot.

The parameter settings and initial conditions that are different from the previous numerical examples are 𝐾1 = diag{2, 2},
𝐾2 = diag{6, 6}, 𝛽 = 9, 𝛼 = 3, 𝑙 = 200, 𝑞(0) = [1.5, 0]⊤ rad and 𝑋̂1 = [1.5, 0]⊤ rad. The inconsistency of the tuning
parameters is partial because of the different settings of the sampling time where in the real experiment, 𝑇𝑠 = 0.01s, while that
of the simulation experiment is 0.001s. To demonstrate the advantages of the proposed method, we apply a PID algorithm to
the Kinova robot whose values of the parameter are 𝑃 = 3.5, 𝐼 = 0.5 and 𝐷 = 4.1.

The results shown in Fig. 9-13 depict the test results of the proposed algorithm and the classical PID algorithm on two joints of
the Kinova Gen2 robot. From Fig. 9 and Fig. 10, it can be observed that both algorithms can track the reference trajectories with
bounded tracking errors. However, our proposed algorithm exhibits smaller trajectory tracking errors and smaller overshoots. In
Fig. 11 and Fig. 12, it is evident that the torque signals generated by our proposed algorithm are smoother and remain within a
relatively small range without violating the predetermined input constraints. Fig. 13 illustrates the velocity tracking errors of our
proposed algorithm. However, tracking errors are higher in the real world when compared to simulation results. This is mainly
due to the fact that the position measurements provided by the embedded sensors do not accurately present the true angular
position of each joint, which leads to a significant observer error in the velocity information. This observation also motivates
the further improvement of the robustness of the scheme with respect to the sensor noise.
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FIGURE 9 Trajectory tracking error of the proposed con-
troller.
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FIGURE 10 Trajectory tracking error of PID.
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FIGURE 11 Input torque of the proposed controller.
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FIGURE 12 Input torque of PID.
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FIGURE 13 Time evolution of the velocity error of the proposed controller.

8 CONCLUDING REMARKS

In this paper, given only the angular position measurements, the trajectory tracking problem for a manipulator system under the
influence of the model uncertainties, external disturbances and input constraints is addressed. The problem is quite involved in
the sense that the system is highly nonlinear and strong robustness of a limited control input is requested. Our solution to this
problem is composed of a novel NN-based adaptive controller and a modified ESO. The first novelty of the proposed scheme lies
in the fact that we achieve an adjustable bounded control law by utilizing projection operations and an auxiliary term admitting
the tanh(⋅) form to avoid using a saturation function which in general will degrade the performance of the original controller.
Secondly, in terms of uncertainties, if a sufficiently accurate nominal model is indeed available and the external disturbances
are negligible, the controller can be transformed into a completely model-based one by simply setting the parameter 𝜄 = 0.
Meanwhile, the structure and other features (stabilizing and boundedness) of the controller are entirely preserved. Similarly, the
gain tuning for large lumped uncertainties scenarios can also be easily done by selecting 𝜄. This feature significantly enhances
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the generality of the proposed controller and might be favorable to the practitioners, as no control law or adaptive law redesign is
needed. The effectiveness of the proposed scheme is verified in both simulation and real-world environments, where we notice
the sensitivity of the presented controller with respect to large measurement noise. This motivates the first future work direction.
Another one currently under investigation is to consider the state and/or output constraints.
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APPENDIX

A PROOF SUPPORTS

A.1 Proof of Theorem 1
The proof is done in two steps. First, consider the observer (13) without the project operation (16) and prove the properties
claimed in the theorem hold. Then, we show that the projection operator will not spoil the obtained features.

To make the paper self-contained, we introduce the Tube lemma that is essential to the following proof.

Lemma 2. (Tube lemma40): Consider the product space 𝑋 × 𝑌 where 𝑌 is compact. If 𝑁 is an open set of 𝑋 × 𝑌 containing
the slice {𝑥0} × 𝑌 of 𝑋 × 𝑌 , then 𝑁 contains some tube 𝑊 × 𝑌 about {𝑥0} × 𝑌 , where 𝑊 is a neighborhood of 𝑥0 in 𝑋. ⊲

Let

𝜂𝑖(𝑡) =
⎡

⎢

⎢

⎣

𝜂𝑖1(𝑡)
𝜂𝑖2(𝑡)
𝜂𝑖3(𝑡)

⎤

⎥

⎥

⎦

= 𝐿
⎡

⎢

⎢

⎣

𝑥𝑖1(𝑡) − 𝑥̂𝑖1(𝑡)
𝑥𝑖2(𝑡) − 𝑥̂𝑖2(𝑡)
𝑥𝑖3(𝑡) − 𝑥̂𝑖3(𝑡)

⎤

⎥

⎥

⎦

, 𝑖 ∈ I𝑛 (A1)

represent the re-scaled observer error with 𝐿 being

𝐿 ≜ diag{𝑙2, 𝑙, 𝐵𝑓} ∈ ℝ3×3 (A2)

In view of (11) and (13), we can write the dynamic equation of 𝜂𝑖(𝑡) as

𝜂̇𝑖 = 𝑙𝑔(𝜂𝑖) + Φ𝑖, 𝑔(𝜂𝑖) =
⎡

⎢

⎢

⎣

𝜂𝑖2 − 𝑘𝑖1𝑔1(𝜂𝑖1)
𝜂𝑖3 − 𝑘𝑖2𝑔2(𝜂𝑖1)
−𝐵𝑓𝑘𝑖3𝑔3(𝜂𝑖1)

⎤

⎥

⎥

⎦

, Φ𝑖(𝑡) =
⎡

⎢

⎢

⎣

0
0

𝐵𝑓 𝑥̇𝑖3(𝑡)

⎤

⎥

⎥

⎦

(A3)

Obviously, given Assumption 2 holds, there exist a constant 𝜁Φ𝑖
> 0 such that ‖Φ𝑖(𝑡)‖ ≤ 𝜁Φ𝑖

. In addition, if 𝜃 in (14) equals to
1, (A3) can be further written as

𝜂̇𝑖 = 𝑙𝐾𝑖𝜂𝑖 + Φ𝑖 (A4)

Consider a Lyapunov function as follows:

𝑉 (𝜃, 𝜂) =
𝑛
∑

𝑖=1
𝑉𝑖(𝜃, 𝜂𝑖), 𝑉𝑖(𝜃, 𝜂𝑖) = 𝜂⊤𝑖 𝑃𝑖𝜂𝑖 (A5)

in which 𝑃𝑖 is a symmetric positive definite matrix solution to the Lyapunov equation 𝐾⊤
𝑖 𝑃𝑖 + 𝑃𝑖𝐾𝑖 = −𝐼 with 𝐼 being an

identity matrix. Considering 𝜃 = 1, the time derivative of 𝑉𝑖(𝜃, 𝜂𝑖) along the solution of (A4) can be obtained as follows:

𝑑𝑉𝑖(1, 𝜂𝑖)
𝑑𝑡

= −𝑙‖𝜂𝑖‖2 + 2𝜂⊤𝑖 𝑃𝑖Φ𝑖 ≤ − 𝑙
2
‖𝜂𝑖‖

2 +
𝜁2Φ𝑖

𝑙
(𝜆𝑚𝑎𝑥(𝑃𝑖))2 (A6)

which implies that, for all 𝑙 > 0, system (A3) is ISS and there exist  functions to meet (18) when 𝜃 = 1.
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Furthermore, as 𝑉𝑖 is proper2, for all 𝑖 ∈ I𝑛, 𝑅𝑖 = {𝜂𝑖 ∈ ℝ3 ∶ 𝑉𝑖(1, 𝜂𝑖) = 𝜘𝑖} is a compact set of ℝ3 40, with
𝜘𝑖 ∈ [inf 𝑡≥0 𝑉𝑖(1, 𝜂𝑖), sup𝑡≥0 𝑉𝑖(1, 𝜂𝑖)]. Let the function 𝜑𝑖 ∶ ℝ>0 × 𝑅𝑖 → ℝ be the map of (𝜃, 𝜂𝑖) → ⟨∇𝑉𝑖(𝜃, 𝜂𝑖), 𝜂̇𝑖⟩, in which
𝜂̇𝑖 is defined in (A3). Since 𝜑−1

𝑖 is an open subset of ℝ>0 × 𝑅𝑖 containing the slice {1} × 𝑅𝑖 and 𝑅𝑖 is compact, it follows from
the Lemma 2 that 𝜑−1

𝑖 contains some tube (1 − 𝜖𝑖, 1 + 𝜖𝑖) × 𝑅𝑖 about {1} × 𝑅𝑖, where 𝜖𝑖 ∈ (0, 1). Then, for all 𝑙 > 0 and
(𝜃, 𝜂𝑖) ∈ (1 − 𝜖𝜃 , 1 + 𝜖𝜃) × 𝑅𝑖, we can draw a conclusion that the system (A3) is ISS by defining 𝜖𝜃 ≜ ∩𝑖∈I𝑁

𝜖𝑖 to meet all 𝑛
subsystems, and there exist  functions to meet (18). This completes the first part of the proof of the Theorem 1.

Next, let’s include the projection (16) into the velocity observer, and the dynamic of re-scaled observer error 𝜂𝑖 becomes

𝜂̇𝑖 = 𝑙𝑔(𝜂𝑖) + Φ𝑖 +𝑄𝑖, with 𝑄𝑖 =

{

𝑃 −1
𝑖 𝐿−1𝑥̂𝑖𝑥̂⊤𝑖 Λ

⊤Λ
𝑥̂⊤𝑖 Λ⊤ΛΛ⊤Λ𝑥̂𝑖

̇̂𝑥𝑖, ‖Λ𝑥̂𝑖‖ = 𝑆𝑖 and ̇̂𝑥⊤𝑖 Λ
⊤Λ𝑥̂𝑖 > 0

𝟎, otherwise
(A7)

where Λ⊤Λ ≜ 𝐿−1𝑃 −1
𝑖 𝐿−1 with 𝐿 and 𝑃𝑖 are symmetric positive definite matrix defined in (A2) and (A5), respectively3. It’s

straightforward to see that, when 𝑄𝑖 ≠ 𝟎, the time derivative of 𝑉𝑖(𝜃, 𝜂𝑖) will have an addition term 𝜂⊤𝑖 𝑃𝑖𝑄𝑖 given by

𝜂⊤𝑖 𝑃𝑖𝑄𝑖 =
⎡

⎢

⎢

⎣

𝑥𝑖1 − 𝑥̂𝑖1
𝑥𝑖2 − 𝑥̂𝑖2
𝑥𝑖3 − 𝑥̂𝑖3

⎤

⎥

⎥

⎦

⊤
⎡

⎢

⎢

⎣

𝑥̂𝑖1
𝑥̂𝑖2
𝑥̂𝑖3

⎤

⎥

⎥

⎦

𝑥̂⊤𝑖 Λ
⊤Λ

𝑥̂⊤𝑖 Λ⊤ΛΛ⊤Λ𝑥̂𝑖
̇̂𝑥𝑖 (A8)

Thanks to the convexity of hyper-sphere 𝑆𝑖, we have (𝑥𝑖𝑗 − 𝑥̂𝑖𝑗)⊤𝑥̂𝑖𝑗 ≤ 0, for 𝑗 ∈ {1, 2, 3}, when ‖Λ𝑥̂𝑖‖ = 𝑆𝑖. Together with
̇̂𝑥⊤𝑖 Λ

⊤Λ𝑥̂𝑖 = 𝑥̂⊤𝑖 Λ
⊤Λ ̇̂𝑥𝑖 > 0, it follows that 𝜂⊤𝑖 𝑃𝑖𝑄𝑖 ≤ 0. One can see that, the addition term introduced by the projection can

only make the derivative of 𝑉𝑖(𝜃, 𝜂𝑖) more negative and therefore does not affect the previous results. This completes the proof.

A.2 Proof of Theorem 2
Defining 𝜍 = [𝑒⊤, 𝑟⊤, 𝜒⊤,

√

𝑄]⊤ ∈ ℝ3𝑛+1 with 𝑄 ∶= 1
2
𝑡𝑟(𝑊̃ ⊤Γ−1𝑊̃ ), we are going to prove the boundedness of trajectories of

the closed-loop system via the boundedness of 𝜍. First, substitute the control law (32) into (28) to obtain the dynamic equation
in terms of 𝑟 as follows:

𝑀(𝑞)𝑟̇ = −𝐶(𝑞, 𝑞̇)𝑟 − 𝛼𝑀(𝑞)𝐾1𝑟 +𝐾1𝜒 + 𝑊̃ ⊤𝜎(𝑧) + 𝜖(𝑧) (A9)

with 𝑊̃ (𝑡) ≜ 𝑊 − 𝑊̂ (𝑡) ∈ ℝ×𝑛 denoting the estimation error between the ideal weight matrix and the actual weight matrix.
Consider the following candidate Lyapunov function:

𝑉 (𝜍) =
𝑛
∑

𝑖=1
ln[cosh(𝑒𝑖)] +

1
2
𝑟⊤𝑀𝑟 + 1

2
𝜒⊤𝜒 +𝑄

Thanks to the fact that ln[cosh(||𝑥||)] ≤ ||𝑥||2 for any column vector 𝑥, it is easy to bound 𝑉 (𝜍) from below and above as follows

𝜌1 ln(cosh(||𝜍||)) ≤ 𝑉 ≤ 𝜌2||𝜍||
2 (A10)

with some positive constants 𝜌1 ≜ min 1
2
{1, 𝑚}, 𝜌2 ≜ max{1, 1

2
𝑚}.

In view of (20), (21) and (A9) and the relation 𝑒̇ = ̇̂𝑒 + ̇̃𝑋1 = ̇̂𝑒 + 𝑋̃2 with ̇̃𝑋1, 𝑋̃2 are defined in (19), we have the time
derivative of 𝑉 (𝜍) along the solution of closed-loop system is given by

𝑉̇ = − 𝛼
1 + 𝛽′

Tanh⊤(𝑒)Tanh(𝑒) + Tanh⊤(𝑒)𝑟 − 𝛼Tanh⊤𝜒(𝑒) + Tanh⊤(𝑒)𝑋̃2 +
1
2
𝑟⊤𝑀̇𝑟 + 1

2
𝑟⊤[−2𝐶(𝑞, 𝑞̇)𝑟]

+ 𝑟⊤[−𝛼𝑀(𝑞)𝐾1𝑟 +𝐾1𝜒 + 𝑊̃ ⊤𝜎(𝑧) + 𝜖(𝑧)] + 𝜒⊤[−𝐾1𝑟 −𝐾2𝜒 + 𝛼Tanh(𝑒)] − 𝑡𝑟(𝑊̃ ⊤Γ−1 ̇̂𝑊 )

= − 𝛼
1 + 𝛽′

Tanh⊤(𝑒)Tanh(𝑒)+ Tanh⊤(𝑒)𝑋̃2 −𝜒⊤𝐾2𝜒 − 𝛼𝑟⊤𝑀(𝑞)𝐾1𝑟+Tanh
⊤(𝑒)𝑟+𝑟⊤𝜖(𝑧)+𝑟⊤𝑊̃ ⊤𝜎(𝑧)−𝑡𝑟(𝑊̃ ⊤Γ−1 ̇̂𝑊 )

≤ − 𝛼
1 + 𝛽′

||Tanh(𝑒)||2 + ‖Tanh(e)‖‖𝑋̃2‖ − 𝜆𝑚𝑖𝑛(𝐾2)‖𝜒‖2 − 𝛼𝑚𝜆𝑚𝑖𝑛(𝐾1)‖𝑟‖2 + ‖Tanh(𝑒)‖‖𝑟‖ + ||𝑟||‖𝜖(𝑧)‖

+𝑟⊤𝑊̃ ⊤𝜎(𝑧)−𝑡𝑟(𝑊̃ ⊤Γ−1 ̇̂𝑊 ) (A11)

2Proper map, in topology, a property of continuous function between topological spaces, if inverse images of compact subsets are compact
3A symmetric positive definite matrix can be represented as the product of a lower triangular matrix, which have all positive eigenvalues, and its transpose, also known

as Cholesky decomposition.
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where the vector function Tanh(𝑒) ≜ [tanh(𝑒1),⋯ , tanh(𝑒𝑛)]⊤ and we have taken advantage of the relation that

𝑑
𝑑𝑡

𝑛
∑

𝑖=1
ln[cosh(𝑒𝑖)] =

𝑛
∑

𝑖=1
tanh(𝑒𝑖)𝑒̇𝑖 = Tanh⊤(𝑒)𝑒̇.

Thanks to (20), (31) and the fact that tanh(𝑥) ≤ 𝑥 for 𝑥 ≥ 0, 𝑡𝑟(𝑥𝑦⊤) = 𝑥⊤𝑦 for all column vector 𝑥, 𝑦 ∈ ℝ𝑛, we can further
derive the upper bound of the last two-term of 𝑉̇ as

𝑟⊤𝑊̃ ⊤𝜎(𝑧) − 𝑡𝑟(𝑊̃ ⊤Γ−1 ̇̂𝑊 ) = 𝑟⊤𝑊̃ ⊤𝜎(𝑧) − 𝑡𝑟
(

𝑊̃ ⊤𝜎(𝑧)( ̇̂𝑒⊤ + 𝛼
1 + 𝛽′

Tanh⊤(𝑒) + 𝛼𝜒⊤) − 𝑊̃ ⊤𝜌𝑊̂
)

= [𝑊̃ ⊤𝜎(𝑧)]⊤𝑟 − 𝑡𝑟
(

𝑊̃ ⊤𝜎(𝑧)𝑟⊤
)

− 𝑡𝑟
(

𝜌𝑊̃ ⊤𝑊̂
)

= 𝑡𝑟(𝜌𝑊̃ ⊤𝑊̂ ) = 𝑡𝑟(𝜌𝑊̃ ⊤(𝑊 − 𝑊̃ )) ≤ −
𝜌
2
‖𝑊̃ ‖

2
𝐹 +

𝜌
2
‖𝑊 ‖

2
𝐹 (A12)

where we have neglected the effect of projection operation, as it only makes the time derivative more negative. The rigorous
derivation in the case that there exists projection of NN follows the proof of Lemma 4 of in41 Chapter 3.

Next, utilizing Property 2, Property 3 and (A12), we have

𝑉̇ ≤− 𝛼
1+𝛽′

||Tanh(𝑒)||2+‖Tanh(e)‖‖𝑋̃2‖+‖Tanh(𝑒)‖‖𝑟‖−𝛼𝑚𝜆𝑚𝑖𝑛(𝐾1)||𝑟||2+𝜖𝑁 ||𝑟||−𝜆𝑚𝑖𝑛(𝐾2)||𝜒||2−
𝜌
2
‖𝑊̃ ‖

2
𝐹 +

𝜌
2
𝑊𝐵

where 𝑊𝐵 is a positive constant whose value is proportional to the lumped uncertainties. Finally, applying Young’s inequalities
to the cross terms in the above inequality, it holds that

‖Tanh(e)‖‖𝑋̃2‖ ≤ 1
4
‖Tanh(𝑒)‖2 + ‖𝑋̃2‖

2, ‖Tanh(𝑒)‖‖𝑟‖ ≤ ‖Tanh(𝑒)‖2 + 1
4
‖𝑟‖2, 𝜖𝑁‖𝑟‖ ≤ 1

4
‖𝑟‖2 + 𝜖2𝑁

which yields

𝑉̇ ≤ − ( 𝛼
1 + 𝛽′

− 5
4
)||Tanh(𝑒)||2 − 𝜆𝑚𝑖𝑛(𝐾2)||𝜒||2 −

(

𝛼𝑚𝜆𝑚𝑖𝑛(𝐾1) −
1
2

)

||𝑟||2 −
𝜌
2
||𝑊̃ ||

2
𝐹 + ‖𝑋̃2‖

2 + 𝜖2𝑁 +
𝜌
2
𝑊𝐵

Bearing in mind the fact that tanh2(||𝑥||) ≤ ||Tanh(𝑥)||2 for any column vector 𝑥 ∈ ℝ𝑛, 𝑉̇ (𝑡) can be further bounded by

𝑉̇ ≤ −𝛽2tanh
2(||𝜍||) + 𝛽1 (A13)

where 𝛽1 = 𝜅̄2 + 𝜖2𝑁 + 𝜌
2
𝑊𝐵 with 𝜅̄ ≜ [𝜅1, 𝜅2,⋯ , 𝜅𝑛]⊤. 𝜅𝑖, defined in (18), are the upper bound of the estimation errors ‖𝑋̃2‖.

𝜍 = [𝑒⊤, 𝑟⊤, 𝜒⊤,
√

𝑄]⊤ ∈ ℝ3𝑛+1 with 𝑄 ∶= 1
2
𝑡𝑟(𝑊̃ ⊤Γ−1𝑊̃ ) is defined at the beginning of the proof. 𝛽2 ∈ ℝ is given by

𝛽2 = min{ 𝛼
1 + 𝛽′

− 5
4
, 𝛼𝑚𝜆𝑚𝑖𝑛(𝐾1) −

1
2
, 𝜆𝑚𝑖𝑛(𝐾2),

𝜌
𝜆𝑚𝑎𝑥(Γ−1)

}. (A14)

The positiveness of 𝛽2 is guaranteed by conditions (33)−(35) and 𝛽2 is a term proportional to the size of model uncertainties
and external disturbances, thus the closed-loop system is ISS with respect to the “lumped uncertainties”. Given this, it is trivial
to see that 𝜍 is bounded asymptotically enters a small hyper-sphere of the origin whose size depends on tuning parameters and
the “lumped uncertainties”, which indicates the same boundedness and convergence property of all elements in 𝜍, i.e. 𝑒, 𝑟, 𝜒 and
𝑊̃ . Now, the only thing left is to show similar property also holds for 𝑒̇.

Referring to (20), we have lim𝑡→∞ ‖

̇̂𝑒‖ ≤ lim𝑡→∞ ‖𝑟‖ + 𝛼
1+𝛽′

‖𝑒‖ + 𝛼‖𝜒‖ converges to a sufficiently small value as well.
Furthermore, thanks to the convergence property stated in Theorem 1 and the relation 𝑒̇ = ̇̂𝑒+ ̇̃𝑋1, one can easily conclude that 𝑒̇
also converges to a small neighborhood of the origin whose size depends on tuning parameters and the “lumped uncertainties”.
Thus ending the proof.

A.3 Proof of Theorem 3
Rewrite the control law in (32) as

𝜏𝑖 = 𝐾1𝑖𝜒𝑖 − ℎ̂𝑖 − Δ𝑓𝑖, 𝑖 = 1, 2⋯ 𝑛 (A15)

where 𝜒𝑖, Δ𝑓𝑖 and ℎ̂𝑖 are 𝑖-th row elements of Δ𝑓 , 𝜒 and ℎ̂, respectively, and 𝐾1𝑖 represents its 𝑖-th diagonal elements. Thanks
to the projection operator (31) in (30), the following inequality holds naturally

|Δ𝑓𝑖| ≤ 𝜄𝑖𝜏𝑁 . (A16)

Secondly, benefiting from Lemma 1, one have

|𝐾1𝑖𝜒𝑖| ≤ |𝐾1𝑖| (A17)
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For ℎ̂𝑖, which is the 𝑖-th element of ℎ̂ defined in (26), according to Property 3 and Assumption 1, 2, it holds that

|ℎ̂𝑖| ≤𝑚[
𝛼

1 + 𝛽′
‖

̇̂𝑒‖ + 𝛼‖𝐾2‖ + 𝛼2 + ‖𝐵𝑎‖] + 𝜁𝑐‖𝐵𝑣‖[‖𝐵𝑣‖ +
𝛼

1 + 𝛽′
+ 𝛼] + 𝜁𝑓𝑑‖𝐵𝑣‖ + 𝜁𝑓𝑠 + 𝜁𝑔 , 𝑖 ∈ I𝑛 (A18)

Applying Young’s inequality to the term 𝜁𝑐‖𝐵𝑣‖(
𝛼

1+𝛽′
+ 𝛼) in (A18), we have

𝜁𝑐‖𝐵𝑣‖(
𝛼

1 + 𝛽′
+ 𝛼) ≤

𝜁2𝑐 ‖𝐵𝑣‖
2

4𝑚
+ 𝑚( 𝛼

1 + 𝛽′
+ 𝛼)2. (A19)

In view of (A16)-(A19), together with the bounds of the observation error derived in (A29) of Appendix A.4, we can further
bound 𝜏𝑖 by following inequality:

|𝜏𝑖|≤|𝐾1𝑖|+𝑚[
𝛼

1+𝛽′
𝑆+𝛼‖𝐾2‖+𝛼2+( 𝛼

1 + 𝛽′
+𝛼)2]+𝑚‖𝐵𝑎‖+(𝜁𝑐+

𝜁2𝑐
4𝑚

)‖𝐵𝑣‖
2+(𝑚 𝛼

1+𝛽′
+𝜁𝑓𝑑 )‖𝐵𝑣‖+𝜁𝑓𝑠+𝜁𝑔+𝜄𝑖𝜏𝑁

=𝑔1𝑖 + 𝑔2𝑖 + 𝜄𝑖𝜏𝑁 , (A20)

where 𝐾1𝑖 represents its 𝑖-th diagonal elements, 𝑔1𝑖 and 𝑔2𝑖 are defined as follows

𝑔1𝑖≜ |𝐾1𝑖| + 𝑚[ 𝛼
1 + 𝛽′

𝑆 + 𝛼‖𝐾2‖ + 𝛼2 + ( 𝛼
1 + 𝛽′

+ 𝛼)2], (A21)

𝑔2𝑖≜ 𝑚‖𝐵𝑎‖ + (𝜁𝑐 +
𝜁2𝑐
4𝑚

)‖𝐵𝑣‖
2 + (𝑚 𝛼

1 + 𝛽′
+ 𝜁𝑓𝑑 )‖𝐵𝑣‖ + 𝜁𝑓𝑠 + 𝜁𝑔 . (A22)

Here, the upper bound of |𝜏𝑖| is divided into three parts, 𝑔1𝑖 mainly depends on the tuning parameters 𝐾1, 𝐾2 and 𝛼 while the
size of 𝑔2𝑖 is determined by the parameters relevant to the desired trajectories, i.e. 𝐵𝑎 and 𝐵𝑣. In view of (A20) and if 𝜄𝑖 verifies
the (37), it can be easily seen that the control law is norm-bounded by

|𝜏𝑖| ≤ 𝜏𝑁 , (A23)

for all 𝑖 ∈ I𝑁 , which typifies the boundedness property of the control effort claimed in this theorem. Now, one thing left is to
show that the feasible range of tuning parameter 𝜄𝑖 is non-empty. In other words, solutions of inequalities (33)-(37) exist.

To this end, we need to first find the minimum value of 𝑔1𝑖 given sufficiently small tuning parameters that guarantees the
stability of overall system. For any 𝐾1 and 𝐾2 verifying the condition (34)-(36), it holds that

𝑔1𝑖 ≥𝜆𝑚𝑖𝑛(𝐾1) + 𝑚[ 𝛼
1 + 𝛽′

𝑆 + 𝛼𝜆𝑚𝑖𝑛(𝐾2) + 𝛼2 + ( 𝛼
1 + 𝛽′

+ 𝛼)2]

≥𝜆𝑚𝑖𝑛(𝐾1) + 𝑚[ 𝛼
1 + 𝛽′

𝑆 + 𝛼 ⋅ max{0, 𝜆𝑚𝑎𝑥(𝐾1)(𝐵𝑜𝑣 +
𝛼

1 + 𝛽′
) + 𝛼 − 𝜆𝑚𝑖𝑛(𝐾1)𝛼} + 𝛼2 + ( 𝛼

1 + 𝛽′
+ 𝛼)2]

≥𝜆𝑚𝑖𝑛(𝐾1) + 𝑚[ 𝛼
1 + 𝛽′

𝑆 + 𝛼2 + ( 𝛼
1 + 𝛽′

+ 𝛼)2] ≥ 1
2𝛼𝑚

+ 𝑚[ 𝛼
1 + 𝛽′

𝑆 + 𝛼2 + ( 𝛼
1 + 𝛽′

+ 𝛼)2] (A24)

where 𝐵𝑜𝑣 represents the upperbound of the estimated velocity’s error defined in (A29), 𝑆 =
√

𝑆2
1 +⋯ + 𝑆2

𝑛 for 𝑖 ∈ I𝑛, and a
reasonable value of 𝑆𝑖 is defined in (17). Referring to (33), one can see 𝑔1𝑖 approaches its minimum value as

𝛼 → (
5 + 5𝛽′

4
)+ (A25)

where (⋅)+ represents the right limit at this point, and the proof is placed in Appendix A.5. Hence, one have

inf
𝐾1,𝐾2,𝛼

𝑔1𝑖 =
2

5(1 + 𝛽′)𝑚
+ 𝑚[125

16
+ 75

8
𝛽′ + 25

8
𝛽′2 + 5

4
𝑆] ∶= 𝑔1𝑖 (A26)

As for 𝑔2𝑖, consider the extreme case where the desired trajectories are zero signals, we have

inf
𝐵𝑣,𝐵𝑎

𝑔2𝑖 =𝜁𝑓𝑠 + 𝜁𝑔 ∶= 𝑔2𝑖 (A27)

In summary, there exists a non-empty set of tuning parameter and desired trajectories such that,

Δ𝑔 ∶= 𝑔1𝑖 + 𝑔2𝑖 − 𝑔1𝑖 − 𝑔2𝑖

can be rendered arbitrarily small.
Define

𝜏∗𝑁 > 2
5(1 + 𝛽′)𝑚

+ 𝑚[125
16

+ 25
4
𝛽′ + 25

8
𝛽′2 + 5

4
𝑆] + 𝜁𝑓𝑠 + 𝜁𝑔 (A28)
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Under the condition that 𝜏𝑁 ≥ 𝜏∗𝑁 , one can see that

𝑔1𝑖 + 𝑔2𝑖 = 𝑔1𝑖 + 𝑔2𝑖 − Δ𝑔 < 𝜏𝑁 .

Put it in another way, there always exist 𝛼, 𝐾1, 𝐾2, 𝐵𝑣 and 𝐵𝑎 such that the following inequality is ensured:

𝑔1𝑖 + 𝑔2𝑖 < 𝜏𝑁

Therefore, one can conclude that 1 − 𝑔1𝑖+𝑔2𝑖
𝜏𝑁

> 0, i.e., 𝜄𝑖 admits a feasible range to verify condition (37) and in turn ensure the 𝜏𝑖
to be bounded by 𝜏𝑁 . Thus ending the proof.

A.4 Proof of boundedness of 𝜒(𝑡)
Substituting (20) into (21), we have

𝜒̇ = −𝐾1( ̇̂𝑒 +
𝛼

1 + 𝛽′
Tanh(𝑒) + 𝛼𝜒) −𝐾2𝜒 + 𝛼Tanh(𝑒) = −(𝐾1𝛼 +𝐾2)𝜒 + 𝑢̄(𝑡), 𝜒(0) = 0

where 𝑢̄(𝑡) = −𝐾1( ̇̂𝑒 +
𝛼

1+𝛽′
Tanh(𝑒)) + 𝛼Tanh(𝑒). In view of (16) and (20), we can bound ‖

̇̂𝑒‖ by

‖

̇̂𝑒‖ ≤ ‖

̇̂𝑞‖ + ‖𝑞̇𝑑‖ ≤ 𝑆 + ‖𝐵𝑣‖ ≜ 𝐵𝑜𝑣 (A29)

where 𝐵𝑣 is defined in (7), 𝑆 =
√

𝑆2
1 +⋯ + 𝑆2

𝑛 with 𝑆𝑖 given by, for instance, (17).
Since 𝛼, 𝐾1 and Tanh(⋅) all feature an upper bound, the norm-bounded of 𝑢̄(𝑡), can be easily derived as

‖𝑢̄(𝑡)‖ ≤ 𝜁𝑢̄ ∶= 𝜆max(𝐾1)(𝐵𝑜𝑣 +
𝛼

1 + 𝛽′
) + 𝛼

which yields

𝜒 ≤

𝑡

∫
0

𝑒−(𝐾1𝛼+𝐾2)(𝑡−𝜏)𝜁𝑢̄𝑑𝜏 = 𝜁𝑢̄(𝐾1𝛼 +𝐾2)−1(𝐼 − 𝑒−(𝐾1𝛼+𝐾2)𝑡) ≤ (𝐾1𝛼 +𝐾2)−1[𝜆max(𝐾1)(𝐵𝑜𝑣 +
𝛼

1 + 𝛽′
) + 𝛼]

In virtue of Lemma 1, when tuning gains 𝛼, 𝐾1 and 𝐾2 meet the condition (36), we can easily conclude that ‖𝜒(𝑡)‖ ≤ 1, which
confirms the boundedness of 𝜒(𝑡).

A.5 Proof of lower bound of 𝑔1𝑖 at the condition (A25)
Introduce a function

𝑓 (𝛼) = 1
2𝛼𝑚

+ 𝑚[ 𝛼
1 + 𝛽′

𝑆 + 𝛼2 + ( 𝛼
1 + 𝛽′

+ 𝛼)2]

whose partial derivative with respect to 𝛼 are denoted by 𝑓 ′(𝛼) and 𝑓 ′′(𝛼), given by

𝑓 ′(𝛼) = − 1
2𝛼2𝑚

+ 𝑚[
10 + 12𝛽′ + 4𝛽′2

1 + 2𝛽′ + 𝛽′2
𝛼 + 1

1 + 𝛽′
𝑆], 𝑓 ′′(𝛼) = 1

𝛼3𝑚
+ 𝑚

10 + 12𝛽′ + 4𝛽′2

1 + 2𝛽′ + 𝛽′2

It’s easy to know 𝑓 ′′(𝛼) > 0 for all 𝛼 satisfy condition (33). Hence, 𝑓 ′(𝛼) is monotonically increasing with respect to 𝛼.
Considering the fact 𝑓 ′(0+) < 0 and the following equation

𝑓 ′(𝛼)|𝛼=(5+5𝛽′)∕4 = − 8
25(1 + 𝛽′)2𝑚

+ 𝑚
50 + 60𝛽′ + 20𝛽′2 + 𝑆

1 + 𝛽′

It’s worth noting that 𝑓 ′((5 + 5𝛽′)∕4) > 0 can be satisfied in a general robotic manipulator system with constants 𝛽′, 𝑚 and 𝑚.
Therefore, the minimum value of 𝑓 (𝛼) can be approached as 𝛼 trends to ((5 + 5𝛽′)∕4)+, which denotes the right limit of point
𝛼 = (5 + 5𝛽′)∕4, i.e.

inf
𝛼
𝑓 (𝛼) = lim

𝛼→((5+5𝛽′)∕4)+
𝑓 (𝛼) = 2

5(1 + 𝛽′)𝑚
+ 𝑚[125

16
+ 75

8
𝛽′ + 25

8
𝛽′2 + 5

4
𝑆]

In terms of (A24), one can know that the minimum point of the lower bound of 𝑔1𝑖(𝛼) is the same as the minimum point of
𝑓 (𝛼), which is a sufficient conclusion. And we have completed the proof.
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